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Abstract 

In order to be able to study a large electronic system following a building block 
approach, in which smaller tractable subsystems are handled at a time rather than the 
system as a whole, equations are proposed in this paper whose solutions are variational 
orthogonal orbitals localized on the subsystems. The equations for a given subsystem 
correspond to a molecular cluster embedded in the field created by the rest of the 
system, and are coupled to the corresponding equations for all subsystems under 
consideration, so that they must be solved self-consistently. While the localized nature 
of the solutions makes the equations appropriate for use in conjunction with local basis 
sets in practical implementations without significant loss of precision due to truncation 
errors, their orthogonality properties allow for the use of the advantages of the theory 
of separability of McWeeny in order to calculate total energies and (generalized product) 
wave functions. Since the building block equations proposed involve inter-subsystem 
interactions very cumbersome to calculate, an approximation is proposed in order to 
make their application to actual problems feasible: the representation of the cumbersome 
interaction operators by ab initio model potentials which are obtained directly from 
them, without resorting to any parametrization procedure based on a reference. This ab 
initio model potential approximation has been found to provide considerable computational 
savings without significant loss of accuracy in frozen-core calculations on molecules 
and frozen-lattice calculations on imperfect crystals. 

1. Introduction 

Although the size of a particular electronic system does not confine the 
applicability of quantum theory from a conceptual point of view, actual computations 
of electronic properties of large molecules or infinite systems (like solids) have 
been and still are considerably limited. This has been a challenge to many scientists 
and has promoted a tremendous effort to look for alternatives that drastically reduce 
the computational problems. The exploitation of point and translational symmetry 
and the development of efficient and specific algorithms has made ab initio calculations 
on moderately complex perfect crystalline systems at the Hartree-Fock level 
feasible [ 1 ]. Also, all-electron programs which take full advantage of point-symmetry, 
direct approaches, efficient transformation algorithms, rapid convergence methods, 
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etc., are making the ab initio study of larger and larger molecules possible [2], 
although the computational difficulties still determine the interplay between the size 
and the sophistication of the methodological treatment. 

A parallel effort has also been made on the development of basic theory. 
Here, the driving force has been the partition of the large problem into tractable 
subsystems which become the basis for a building block approach, whose final goal 
is to achieve variational solutions for the whole system [3-9].  The result is usually 
the formulation of a set of coupled equations (one for each subsystem under the 
effects of the others), which are simpler to treat than those for the entire system, 
and must be solved iteratively until the electronic densities and their mutual interactions 
are described self-consistently. However, few attempts have actually been made to 
solve the whole set of equations up to the final and self-consistent stage. 

Many cases exist in which interest is focused on a relevant portion of the 
system rather than on the system itself. Examples are the valence electrons in a 
molecule, responsible for the bonding properties, or the cluster formed by an impurity 
and its closest coordination shells in a doped crystal, responsible for the local 
distortions caused by the impurity. In these circumstances, it may not be necessary 
to solve the building block equations completely, since the solutions for some 
subsystems may be known with sufficient accuracy from the beginning (atomic 
cores in molecules, unaffected lattice in doped crystals . . . .  ). The equations then 
become the basis for "frozen subsystem" approximations, for which only the equation 
for the relevant subsystem is tackJed and no iteration over the whole set of equations 
is performed. These latter approximations have been extensively applied to valence- 
electron calculations in molecules (frozen core) [10-23] and, more scarcely, to 
embedded cluster calculations in crystals (frozen lattice) [24-27].  Also, embedded 
cluster methods have been proposed for solids which include lattice polarization 
effects through the use of empirically parametrized models [28-31].  

Building block equations for large electronic systems have been proposed 
following two different lines. On the one hand, in 1960 Boys suggested the usefulness 
of localized orbitals to describe chemically invariant subsystems whose density 
matrix could be computed all at once and then transported to build up the wave 
function of systems containing such common blocks [3]. Gilbert developed further 
the idea of using localized orbitals as a basis for building block equations and 
proposed a transformation of the HF equation for the entire system into an equivalent 
set of smaller self-consistent subsystem equations for linearly independent localized 
orbitals which are nonorthogonal in general [4]. (We will be referring to these 
equations as Gilbert equations from now on.) Later, he extended his work to the 
formulation of a multiconfiguration self-consistent field theory for localized 
orbitals [5]. Particular forms of Gilbert equations have been proposed to study 
molecules and solid-state problems [6,32,33]. 

On the other hand, the idea of separability of a many-electron system and its 
quantum mechanical formulation led to a considerable amount of work [34-37] 
and, particularly, the formulation by McWeeny and Kleiner [7] and by Huzinaga 
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et al. [8,9] of building block equations. Their work is based upon the proposition 
of the expansion of the total many-electron wave function in terms of a basis set 
of  antisymmetric products of group wave functions which are required to fulfill 
strong-orthogonality conditions and, as a consequence, lead to a very convenient 
expression for the total energy as a sum of group energies plus interaction energies 
between groups. The expansion is expected to be a very good approximation (i.e. 
able to include intra-group electron correlation) to the total wave function when it 
is possible to partition the system into weakly interacting subsystems. Within this 
framework, Huzinaga et al. [8,9] have shown that the variational principle is very .  
naturally partitioned and applied in steps by requiring the energy of each group 
(under the effects of the others) to be a minimum with respect to variations of its 
wave function under the requirement of strong-orthogonality between all group 
wave functions, this resulting in a set of building block equations which must be 
solved iteratively until self-consistent group functions lead to a final self-consistent 
solution for the whole system. In particular, when the expansion is reduced to only 
one antisymmetric product of  group functions and each group function can be 
described by a single determinant, the solutions of Huzinaga equations are the 
standard Hartree-Fock orbitals for the entire system. Huzinaga building block 
equations have been the basis for the model potential method, which has been 
extensively applied (along the line of the frozen subsystem approach) to valence 
calculations in molecules [16-23] and, recently, to embedded cluster calculations 
in crystals [26, 27]. 

It is interesting to compare the building block eqautions set up by Gilbert 
with those of Huzinaga; this comparison is most simple and clear if we contrast 
their Hartree-Fock analogues instead of their respective multiconfigurational versions. 
At this stage, although the solutions of (i) any particular form of Gilbert equations, 
(ii) Huzinaga equations, or (iii) the HF equations for the entire system provide the 
same result (total energy and many-electron wave function) if the expansion method 
with a basis set common to all subsystems is used, their practical applications show 
specific advantages and disadvantages, and it is the balance between them that may 
guide the choice of equations for solving a particular problem. Along actual applications 
where finite basis sets are used, the choice of nonorthogonal localized orbitals 
represents an initial advantage over the use of orthogonal (non-localized) orbitals: 
One may expect the basis set for the subsystems to be more localized in the former 
case, so leading to smaller truncation errors and smaller subsystem equations. In 
this respect, we may remark that smaller basis sets than the ones required for the 
whole HF problem can be used to solve Huzinaga equations for a particular subsystem, 
because only a subset of the standard HF orbitals is obtained from them and has 
to be spanned. However, the basis set for each subsystem must be flexible enough 
so that the orbitals can fulfill the strong-orthogonality requirements with the other 
subsystems. This, in practice, means that some basic functions must span, to a 
certain extent, densities of other subsets and, therefore, the basis set can not be as 
small as in the nonorthogonal case. Some disadvantages are, however, inherent to 
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the use of  nonorthogonal orbitals. These are mainly associated to the calculation of 
the S -1 matrix which affects other magnitudes, like the Fock operator or the total 
energy. Moreover, the nonorthogonality complicates the implementation of the equations 
in standard programs, since they usually assume orthogonal-orbital algorithms, 
whereas Huzinaga equations are straightforwardly implemented by simply adding 
the new contributions to the one-electron integrals. 

From the previous comments, it is expected that the practical advantages 
would increase if building block equations for subsystems were used for which the 
orbitals are localized in space while keeping the orthogonality between subsystems. 
The convenience of such a set of equations can be illustrated further if we consider 
two limiting situations which define a range of problems along which localization 
becomes increasingly necessary: 

(i) There is a subset (or subsets) of the standard HF orbitals which is actually 
localized in space. This is the case, for instance, for an impurity in a perfect crystal 
which causes a local distortion on the host. For this case, it is expected that the 
standard HF manifold include a subset of orbitals strongly localized around the 
impurity. In this limit, Huzinaga equations can be used safely to solve the actually 
localized subsystem with small truncation errors and fast and accurate algorithms 
based on orthogonal orbitals. 

(ii) The whole HF manifold is delocalized. This is the case, for instance, for 
the standard HF solutions of a perfect crystal. The HF orbitals are periodic orbitals 
and Huzinaga equations would require the use of basis sets extended over the whole 
crystal, making them useless, in practice, for this case. However, in perfect crystals 
it is still possible to use orbitals that retain the advantage of orthogonality while 
being localized (Wannier-like orbitals [38]) and, clearly, building block equations 
for localized orthogonal orbitals would be a safer choice in actual calculations, 
particularly when large unit cells make ab initio calculations of the whole system 
with periodic bases [1] prohibitive. Finally, intermediate situations can be found 
where the distortion caused by a defect propagates beyond first neighbours. Also, 
chemisorption problems could be cited to illustrate the convenience of using building 
block equations for localized orthogonal orbitals including intra-group electron 
correlation. 

In this paper, we propose a modification of Huzinaga building block equations 
such that the solutions of the new set are ordaogonal and localized on the subsystems, 
but they are not necessarily the standard HF orbitals: The equations retain the 
advantages shown by Huzinaga equations and widen the field of practical applicability 
to the problems illustrated above where, presumably, one or more subsets of interest 
of  the standard HF orbitals are not localized. Other desirable features inherited from 
the original set are, first, the possibility of straightforwardly introducing relativistic 
effects through the use of appropriate one-electron operators [18, 19, 22] and, second, 
the inclusion of intra-group electron correlation along standard methods (and programs) 
like, for instance, CI [7, 19,27]. 
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In section 2 of this paper, the original building block equations of Huzinaga 
are shown to be related to Gilbert equations. We show that among all possible 
arbitrary choices of Gilbert equations, one of them leads to a set of subsystem 
equations which is equivalent to Huzinaga's. It is in the light of this relation that 
we propose, in section 3, a modification of Huzinaga equations which combines the 
convenient properties of localization and strong orthogonality. 

Finally, in order to bring considerable computational savings to make the 
calculations feasible, some approximations to the inter-subsystem interaction terms 
present in the equations are necessary. Previous experience in frozen-core molecular 
calculations and frozen-lattice calculations in crystals with impurities has shown 
that an adequate balance between precision and economy can be achieved if the ab 
initio model potential approximation is followed in order to represent inter-subsystem 
interactions [ 19-22,26,  27]. Within this approximation, a spectral representation of 
non-local operators (exchange) is used in such a way that the model potential 
operators to be used in the equation for a given subsystem are obtained directly 
from the wave functions of the other subsystems. They are not parametrized even 
in order to reproduce reference results. Recently, the use of the spectral representation 
has'been extended to local operators [19, 27] (Coulomb, relativistic operators), thus 
facilitating the obtention of ab initio model potentials not only for one-centre subsystems 
(such as atomic cores or complete-ion potentials), but also for many-centre subsystems 
[27]. Making use of this feature, we present in section 4 the ab initio model potential 
approximation for the modified Huzinaga equations; these model potential equations 
are the ones to be implemented in molecular programs and used in actual computations 
of  molecules and solid state. 

2. Gilbert and Huzinaga equations for subsystems 

In this section, we first summarize the main features of  Gilbert equations, 
which stem from the fact that the one-electron density operator in HF theory is a 
projection operator. Then, we see how Huzinaga building block equations for subsystems 
are related to them. 

Following Gilbert [4], let us start from the standard form of the Hartree- 
Fock (HF) equation, 

• = e ,  I ( 1 )  

where ,~ is the Fock operator for the complete system and I Vi> is one of the 
orthonormal standard spin-orbitals, which may be occupied, [ V~cc), or virtual, [ v, Yir). 
This holds for the unrestricted HF and for the closed-shell restricted HF cases. 

Let I/P cc be a row vector containing all the occupied standard HF spin- 
orbitals, 

I/t°cc - (I V~cc), [V~ cc) . . . . .  I vn°cc)), (2) 
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and /:3 the corresponding Fock-Di rac  one-electron density operator 

~_-- iV4~clgocct = ~_~ l~)<~/~Cl, 
i=l,n 

which is a projection operator, such that 

(3) 

/:31 ~ )  = I Vz~) ,  tSI ~v~r) = O. (4) 

I f ~  is an arbitrary one-electron operator, its projection onto the occupied HF 
manifold, t:3,4~3, satisfies 

where 

~A~I ~ '~ )  = #AI ~ )  = ~., I ~ ) A j i ,  
J 

Aji = <~,yl,il~?C~). Also, ~5,~t51 vir ~i )=0 .  
By subtracting (5) from (1), one obtains 

(5) 

where 

J 

Bji = ei ~i - Aft, and 

(6) 

[#  - ~Ar?]l v# ir) = eil ~,vir). (7) 

Since/5A¢3 has the same transformation properties as ~', one may require the 
matrix B in eq. (6) to be diagonal, thereby obtaining the Gilbert equations, 

[P - ~A~]I qC c) = #i i~0F~). (8) 

where the Iqg~),  called by Gilbert the modified HF orbitals, are related to the 
standard occupied HF orbitals by a linear transformation: 

4P ° ~ =  ~ °~cC, (9) 

/nOCC) ,  • . • with ~pO~C _ (l~0~C),l ~'2 ,I ~0°cc)). In contrast to the standard orbitals, the modified 
HF orbitals I~0ff:c), are not necessarily orthogonal; however, they must be linearly 
independent and, therefore, able to be orthogonalized. The I(pff "¢) are orthogonal if 
,4 is chosen to be Hermitean. Note also that #3 = dp°C~s-ltp°C~t, where S = ~p°cCttp°~. 

Gilbert equations (eqs. (8))  may be further generalized [4]. In effect, it is 
possible to add a term (1 -/5),4 (1 -/:3), A' being an arbitrary one-electron Hermitean 
operator, to eqs. (8) which produces an analogous modification of the virtual subspace 
while the occupied subset is unaltered. As long as this new term does not mix the 
occupied and virtual manifolds, the wave function and energy remain intact. This 
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fact was pointed out and used in order to improve the virtual orbitals prior to their 
use in correlation energy calculations [4,9]. 

Gilbert equations provide a basis for localization, and some authors have 
been using particular forms of them in order to study parts of a system or a complete 
system following a building block approach [6, 32,33]. As an example, let us look 
at Adams' choice [6], which was in fact proposed by him following a completely 
independent route: Suppose we divide a system into two subsystems A and B (what 
follows is general for a partition in any number of subsystems, the difference being 
a slightly more complicated notation), defined by two corresponding sets of occupied 
orbitals. The Fock operator for the whole system may be written as 

where I,~,~ nv and ~nv are the environmental effects on A and B, res^pectively. 
Adams [6] used eqs. (8) with A = ~5_ j5 A for subsystem A, and A = E - F B  for 
subsystem B, obtaining 

and 

[/~ -- P ( F  - /~A)f3][(PA Adams> = "~Ai°Adams I~AAdams) 

[/~ -- /9(/~ -- ~)p][~0B~dams> = EBAjdams [ ~0~flams >. 

(11) 

(12) 

Adams deduced these equations by minimizing the self-energy of the subsystems 
(that is, excluding the interaction with the rest of the system), under the constraints 
that (1) the orbitals within a subsystem be orthonormal, and (2) the orbitals of 
different subsystems be linearly independent. Kunz's choice for A was [32] 
,4 =/gAVAS/gA, where /gZ = ~ilqgZi)((OAi[, and 17AS is the short-range component of the 
environmental effects on subsystem A (and similarly for B). Matsuoka [33] proposed 
the use of ,4 = fi - P A P A f ) A  . 

Let us now look at the formalism of Huzinaga [8,9]. He derived building 
block equations for subsystems such that their solutions are exactly the standard HF 
orbitals. This feature means an implicit definition of a subsystem as the subspace 
associated to a particular subset of the standard HF orbitals. So, by requiring the 
energy of a subsystem under the effect of the rest of the complete system to be a 
minimum, under the constraints of strong orthogonality between subsystem wave 
functions (in this case, the condition holds if ( V~/I V~ c) = 3AB(~ij) ,  Huzinaga obtained 
the following equations for subsystem A (and, of course, corresponding equations 
for the other subsystems): 

IF - a~B/~]] Ipr~ co) = ~Ai l~ ic ) ,  (13) 

a being an arbitrary constant. After making the operator Hermitean, the equation 
became 
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- "~ pBF + FpB IVA°~ c) = eAil~A°~C). (14) 

We may comment here that the solutions of  these equations are equivalent to the 
solutions of the HF equations for the entire system, and the strong orthogonality 
constraints must be regarded as a choice among multiple equivalent solutions and 
not as a variational constraint. 

Huzinaga building block equations (eqs. (14)) become, at convergence, 

[" OSE III/B j )eBj(IV~ IIVAi )=eAi l~Ai  ). (15) 
J 

These equations have been used in practice in order to obtain the solutions for the 
subsystem A, I ~ ¢ ) ,  once the solutions for the subsystem B, I ~ ¢ ) ,  are known. 
This is the case for the core and valence subsystems in a molecule, in which the 
(frozen) core orbitals are approximately known from the beginning and only the 
valence orbitals have to be obtained. So, eqs. (15) have been the basis for the core 
model potential methods. They have also been the basis for the study of  impurities 
in crystals along embedded cluster calculations, where the target subsystem is the 
cluster formed by the impurity and its first nearest neighours, and the rest of the 
crystal is formed by a set of previously known frozen subsystems. 

We can now see how Huzinaga building block equations (eqs. (14)) are 
related to Gilbert equations (eqs. (8)): Once we define the subsystems A and B as 
the subspaces associated to particular subsets of  the standard HF occupied orbitals, 
we can define the following row vectors, 

OCC ~ = (I ~ 2  ~) . . . . .  I~A~, ), I ~  ¢) . . . . .  I ~B~, )),  

OCC OCC ~A cc = ( l l f f A l ) , ' ' ' ,  I~rAna)), 

OCC 
~g~c = (I ~'bY) . . . . .  I vB . .  )); (16) 

and the Fock-Dirac  one-electron density operators of subsystems A and B, 

/gA = I//~ccl~A ct, PB = I//~CC~BCCt, (17) 

which fulfill the following properties: 

~) = PA + PB, PAPB = PBPA -" O, 

J0PA = jOAP = PA, PJOB =/SB/~ =/~B. (18) 

If we choose in Gilbert equation ,4 = a/~B/~B for subsystem A, we obtain 
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(19) 

This equation is completely equivalent to eq, (14) and, in fact, it could also have 
been derived from eq. (13) by using a different Hermitezation procedure. It is easily 
seen that the standard HF occupied orbitals which define the subsystem A are 
solutions of eq. (19): 

IF - ~.pBFf)B ]1 I/-/A°~ c ) = gAi I I//A°~C), (20) 

and a property of this choice of equations is that the standard HF orbitals defining 
the other subsystems are also solutions of the same equation, 

- I vaT> = ( 1 -  u,eaT>. (21) 

Similarly, for subsystem B we obtain 

IF - OCpAPPA ] IIp¢~ c) = gBj[lll~C), (22) 

[fg -- O~pAfTf)A ][ I//°.i cc ) ----- (1 - of)EAI [ I//~/c ), (23) 

which may be used to obtain [ ,,,oct\ ~'Bj /. The standard virtual orbitals are eigenfunctions 
of the equations for any subsystem, 

[p __ a~A~A ] [ Illivir ) =  [/6" -- a~BF~B ] l Wvir) = eil tl.tvir). (24) 

We can now compare some features of Huzinaga building block equations 
with those of the previously mentioned equations on the basis of a common root: 
Gilbert equations. For this purpose, it is useful to analyze the action of the operators 
chosen to be added to F in eqs. (8). 

The A operators proposed by Adams [6], Kunz [32], and Matsuoka [33], 
referred to above, produce nonorthogonal localized orbitals which are linear 
combinations of all the standard HF occupied orbitals. As a consequence, one may 
use truncated local basis sets along actual applications. In Huzinaga equations (eqs. 
(19)), A is rather a picking out operator, since it provides the means to select a 
specific subset of the standard occupied spin-orbitals among all the solutions obtained 
in the equations for a subsystem. In this case, the basis set of a subsystem may be 
reduced with respect to the one used for the complete system, since it must span 
only a subset of the standard HF orbitals, but not as much as in the localized orbital 
equations. This is the advantage of Gilbert-Adams-like equations, which becomes 
important as the localization in space of subsets of the standard HF orbitals can not 
be expected. 

On the other hand, the use of nonorthogonal orbitals poses some difficulties. 
First, once the equations are solved, an algorithm for the calculation of the total 
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energy of the system is needed which involves the evaluation of the S -1 matrix of 
the entire system. For large systems, this is not an easy task. Moreover, the operators 
~" and ~ in eq. (11) depend on S -1 and, since the accuracy of the approximations 
used to calculate the inverse matrix may vary along the self-consistent procedure, 
convergence problems may easily arise. Also, the selection of na spin-orbitals from 
the equations for subsystem A, nB from the equations for subsystem B, etc., along 
the self-consistent procedure may affect the convergence. In the case of Gilbert-  
Adams-like equations, this ~lection may not be simple, since the necessary requirement 
of linear independency between orbitals of different subsystems is not automatically 
guaranteed, either explicitly or implicitly. This makes the use of ad hoc methods 
for the achievement of convergence compulsory. In this respect, Matsuoka [33] has 
found that a preorthogonalization of orbitals before every iteration, as well as the 
use of shift operators such as ~ilqgi)~i(q3i[ during the first iterations, are necessary 
to attain convergence. Also, spurious tunnelling effects have been observed in some 
embedded cluster calculations using Gilbert-Adams-like equations [29] which might 
be related to this problem. 

If Huzinaga equations (eqs. 19)) are used, the difficulties associated to the 
calculation of the S -I matrix for the entire system and to ensuring linear independency 
among the solutions disappear, since the strong orthogonality constraints are built 
in. In effect, the fulfillment o f  PA j~B = RB~)A = 0 is inherent to the fact that both 
[I/ta°~C) and I IF~j c) are eigenfunctions of a common Hermitean operator (see eqs. 
(20) and (21)), and during the iterative process it is only necessary to be sure that 
none of the IV~ c) are used to construct ¢3 B for the next iteration, and vice versa: 
an arbitrary value for a large enough (eq. (21)) would shift all the ( 1 -  a)eBj 
eigenvalues above the eAi ones, allowing in this way a proper selection of the I ~  c) 
solutions during the iterations. This, at the same time enforcing orthogonality, 
facilitates the convergence. 

Finally, we may comment that the orthogonality between different subsystem 
solutions facilitates the implementation of the equations in standard computer programs 
for molecular systems, which usually work with orthogonal orbitals. 

3. Modified Huzinaga equations for subsystems 

In this section, we propose building block equations which combine the 
advantages of orthogonality with those of localization. 

The driving idea for the formulation of the equations is the following. We 
look for a choice of the arbitrary operator A for each subsystem in Gilbert equations 
(eq. (8)) such that the set of na solutions to be taken from the equation for subsystem 
A, ~p'~, nB solutions to be taken from the equation for subsystem B, ~p~CC, etc., 
comes from a localizing unitary transformation of the standard occupied HF spin- 
orbitals [39]. The onhogonality between the solutions of a particular subsystem is 
guaranteed if its .4 operator is chosen to be Hermitean. In order to ensure the 
orthogonality between the solutions of different subsystems, we may require all the 
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solutions occ occ tpA ,tpB . . . . .  tO be eigenfunctions of a common Hermitean operator, as 
in the case of Huzinaga equations. (They will, in fact, be eigenfunctions of all the 
Hermitean operators for the subsystems.) These conditions are fulfilled with the 
following choice of .4 in eq. (8). 

= f + ~ p l f i l P l ,  (25) 
/ 

where I runs over the different subsystems, f31 = 9~c%p~ cot, and the ~ !  are arbitrary 
Hermitean operators. In the equations for a given subsystem, A for instance, ~A 
produces a localization on subsystem A if it is chosen to be ~A = I~A -- F- and WA 
is an arbitrary Hermitean localizing operator for A. On the other hand, ~ t ( l  *: A) 
must be chosen so as to make all the IfPl~ c) be solutions of the equations for 
subsystem A. This is satisfied by choosing 

f i I  = (1 -- OQ)(~/I -- fT), (I ~ A), (26) 

at being an arbitrary constant. As in Huzinaga equations, large enough values for 
O C C  the constant al ensure that all the solutions I CPai } are the lowest ones, so providing 

an automatic selection of orbitals for the next iteration which guarantees the fulfillment 
of the strong orthogonality properties between subsystems and facilitates convergence. 

The equations for subsystem A are: 

where 

OA I q~i ) = ~ i l  qgi ), (27)  

OA = f - p[~[) - pA( I /VA-  P)~)A-- y~/~, {(1- at)( l , f ' t -  /5)}f31. 
I~A 

Their solutions are the following: First, 

^ O C C  OAlq~ii c) = ~Ai I@~c) , 

(28) 

(29) 

where ~p~:c are the occupied solutions to be taken from this equation and fulfill 
q~o~c = ~to~CUa, UA being a rectangular matrix made up of na columns of a unitary 
matrix. Second, 

19a I g0~ c) = (1 - OcB))~ c Ig0~c), (30) 

where the I~p~ c) are the same spin-orbitals which are the occupied solutions for the 
equivalent equations for subsystem B but are, however, discarded when obtained 
from the equations for subsystem A (similarly for subsystems C, D . . . .  ). Finally, 

6Alg? ) I = ' ) ,  ( 3 1 )  
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which are the virtual orbitals, useful for a correlation energy calculation, either 
directly or after a modification through some suitable ( 1 -  ¢3)A'(1- ~) operator 
[4,9] as commented above. 

Although it should be noted that any Hermitean localizing form for lg't [6, 24, 39] 
is compatible with eqs. (27) and (28), the compflrison with Gilbert-Adams-l ike 
equations is facilitated if the lg't are chosen to be Wt = F - Ft [6], the environmental 
effects on I. Then, eqs. (27) and (28) reduce to Matsuoka equations [33] if the fourth 
term on the right-hand side of eq. (28) is omitted. In this case, the orbitals for 
different sybsystems are not required to be orthogonal, since they are not solutions 
of a common Hermitean operator; however, care must be taken while choosing 
solutions for the next iteration in order to preserve linear independency, since it is 
not guaranteed by any characteristics built into the resulting equations. In this 
sense, the explicit requirement that /Stpj = 0 (I ¢ J) during the first iterations has 
been found to be necessary to attain convergence [33]; it should be noted that if 
this requirement is met all along the self-consistent procedure using Matsuoka's 
equations, they should produce the same results as eqs. (27) and (28). The proposed 
equations reduce to Kunz equations [32] iL in addition to discarding the fourth term 
on the right-hand side of eq. (28), the second term is also omitted. Finally, they 
reduce to Huzinaga equations when all the localizing operators are set to zero, 
I'VA = ff'B = . . .  = 0, and the second and third terms are omitted. If these two terms 
are not deleted, the resulting equations are equivalent to Huzinaga's, that is, their 
solutions are also the standard HF orbitals. 

The self-consistent solutions of the building block equations, eq. (27), provide 
an adequate and convenient basis to proceed to the calculation of the total energy 
using the formalism of generalized antisymmetric product wave functions of 
McWeeny [7]. In effect, since the solutions of eqs. (27) for all groups show the 
following orthogonality properties, 

occ = <qgli I gtk ) = O, ( I ~kl, (q)li) Iq)Y?) (~lJ(~ij , vir vir iff,~ir I]/vir)= (32) 

they can be used to construct many-electron antisymmetric group wave functions, 
• /(1, 2 . . . . .  nt), so that the strong orthogonality requirements stated in the theory 
are satisfied [71: 

f ~ t ' ( 1 , i , j  ) ~ J ( 1 , k , l  ) d x l = 0 ,  ( l ~ J ) .  (33) 

These antisymmetric group wave functions ~t  can be either one- or many-configuration 
wave functions. Then, according to the theory [7], a very good approximation to 
the total wave function of the system can be the following single generalized 
product: 

V = M A I ]  ¢ I, (34) 
! 
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where M is a normalization factor, 2{ is an inter-group antisymmetrizer, and the 
strong-orthogonal set • t is used. (In particular, if the one-configuration approximation 
is adopted for the Or's, the total wave function q* is the Hartree-Fock wave function 
for the entire system, and its corresponding energy is a minimum if the one-electron 
solutions of eqs. (27) are used.) The total energy for the entire system corresponding 
to eqs. (34) and (33) can be conveniently expressed as a sum of subsystem energies, 
plus interaction energies between subsystems (see ref. [7] for details), 

1 

I I J , l  

4. Ab initio model potential approximation 

The localized character of the solutions of eq. (27) on the different subsystems 
has been described above as a very necessary feature for practical applications, 
since it allows for the use of finite local basis sets without considerable truncation 
errors. However, even if local basis sets are used, the building block eqs. (27), 
which have to be iteratively solved for all the subsystems into which the entire 
problem has been partitioned, involve inter-subsystem interactions very cumbersome 
to calculate which should be approximated by efficient and accurate forms if the 
solution of the equations for actual problems is to be feasible. Here, we propose the 
application of the ab initio model potential approach to model the inter-subsystem 
interactions. This method has been found to provide considerable computational 
savings, without significant loss of accuracy, when applied to frozen-core calculations 
on molecules [20-23] and to frozen-lattice calculations on imperfect crystals [26, 27]. 
The driving idea of the ab initio model potential approximation is to use a representation 
(model potential) of the cumbersome operators, which is obtained directly from 
them without resorting to any parametrization procedure; this is achieved by means 
of local model potentials in the case of simple local operators (i.e. one-centre 
Coulomb) and of spectral representations on appropriate basis sets in the case of 
nonlocal operators (exchange) and more complicated local operators (many-centre 
Coulomb, relativistic operators) [ 19, 20, 22, 27]. 

The Fock operator F involved in eq. (27) can be expressed as 

I , A  I , A  

(36) 

where the potential due to the environment of A, f~nv, has been expressed in terms 
of the potentials created by the subsystems, ~)t, which are [27]" 

O (i) ) 1  _ = - + (i) K l ( i )  + V~IV, DW (i); (37) 
a~l r~ 
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here, the index a runs over the nuclei included in subsystem 1, ) /  and /~t are the 
one-electron Coulomb and exchange operators associated to the group wave function 
of subsystem I [27], and 12MtV, r~ w is an optional relativistic mass-velocity and 
Darwin potential, which appears if the Cowan-Griffin one-component relativistic 
approximation is adopted [19,22,40]. When /5 is used in the equation for a given 
subsystem, let us say A, it is convenient to approximate the terms 121 for all I ¢ A 
as follows: First, I )t is split into long-range and short-range terms, 

Na i /  /~,! -.--^I ] 
+ - -  + VMVDW 

rca 
( 3 8 )  

where Na are arbitrary numbers chosen in order to enforce the long/short-range 
behaviour of the components of the electrostatic potential. Then, 12 t is substituted 
by a model potential ~,I,MP, defined by 

^ ^/  ^ 
1 ~/'MP = ~ + PI~rPI, (39) 

where /3 I is the projection operator on a given basis set of the subsystem 1, 

Zt = (IZn >,1Z/2) . . . .  ), 

/~/= z/S;1zt t , (40) 
being St = Z~Z/. A convenient choice for Zt is the set of primitive basis set functions 
used to expand the solutions of eq. (27) for subsystem I. (Alternatively, if the 
subsystem 1 includes only one nucleus, the -Na/rai + i t  contribution to the long- 
range potential can be approximated by a simple local model potential [26].) So, 
the F operator to be used in the equations of subsystem A is approximated by 

-= 7~ + l'ga + Y_~ (~  + ~V/r~ ), (41) 
l e A  

with obvious changes when it is used in subsystem B, C, etc. 
The second term on the right-hand side of eq. (28) can be approximated, 

following the same kind of approach, by ~t'AFt'A~, where /3 a (see eq. (40)) is the 
projection operator on an appropriate basis set, a convenient choice being the set 
of primitive basis set functions used to expand ~p~C. 

The last two terms on the right-hand side of eq. (28) involve the calculation 
of 

p I ( W I  - F)/91 = ~ c c [ ~ c c t ( ~ l -  p)lp~cc]~cc* (42) 

for all subsystems. The elements of the matrix between square brackets are output 
of the calculation on subsytem I; therefore, these terms do not require any further 
approximations. 
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Finally, we would like to make some comments related to the computations 
involved along the iterative solution of  the building block equations for all subsystems. 
In effect, each cycle, (i) say, requires as many molecular calculations as subsystems 
are considered (along each molecular calculation, eqs. (27) are solved for a particular 
subsystem), this resulting in the (i)th density operator:/5 Ci~ = Y.lf~ i). However,  it is 
important to note that the time consuming two-electron basic integrals for a given 
subsystem are to be computed only once and stored to be used along all iterations 
necessary to achieve the required convergence in/~. This means that after the first 
cycle, the molecular calculations involved in subsequent cycles are considerably 
faster. 
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